
Towards more efficient data
preprocessing in deep networks
Fernando Peña Bes∗,1, Ana C. Murillo∗,1, Darío Suárez Gracia∗,1

∗ DIIS, I3A, Universidad de Zaragoza, Spain

ABSTRACT

The analysis of highly dimensional data, such as hyperspectral images, is challenging due to
the complexity and size of the datasets. We present an analysis of the bottlenecks associated to pro-
cessing this kind of images for a recognition task in a recycling setup and show that preprocessing
plays a critical role in the optimization of hyperspectral pipelines. These observations can help
guide the design of future hardware accelerators close to the sensors that eliminate redundancies in
the captured data, minimizing data transfers and contributing to efficiently process large datasets.
KEYWORDS: hyperspectral imaging; semantic segmentation; power consumption; hardware accelera-
tion

1 Introduction

As deep learning models become increasingly prevalent in industry it is essential to consider
their performance. Training and deploying these models require a significant amount of
computational resources. As the complexity and size of these models increase, so does their
demand for energy, which contributes to carbon emissions that harm the environment.

Therefore, many specialized accelerators have been proposed to speed-up deep learning,
mainly focusing on the hidden layers of the networks [SCYE17, AJH+16]. However, depend-
ing on the sensor, the vast amount of data transferred between its acquisition and processing
can consume a significant amount of energy and time, even moving data within the chip has
become very expensive [Dal22]. Most importantly, reducing the amount of processed data
can also help saving energy, specially in complex task such as classification that require large
computing resources to often run deep networks.

Within this huge domain, our work focuses on the preliminary analysis of hyperspectral
images in the context of a recognition task for a recycling plant. Specifically, we address the
challenge of detecting voluminous objects within a recycling line, which have the potential to
cause obstructions in subsequent processes. Hyperspectral images, although rich in informa-
tion, often suffer from redundancy and high computational and storage requirements. With
the objective of handling this data efficiently, we analyze an image processing pipeline to find
its bottlenecks and compare alternatives for reducing the dimensionality of the data and for
distributing the computation between a CPU and a GPU.

1E-mail: {ferp,dario,acm}@unizar.es



2 Methodology

Dataset The task at hand consists on segmenting two kinds of voluminous plastic objects
in recycling images: large pieces of plastic wrap and plastic baskets. We prepared a small
dataset 222 frames acquired using an image system equipped with a scan-line RGB camera
and a near-infrared hyperspectral camera (also linear).

The spatial resolution of the cameras is 1184 and 640 pixels respectively. In order to process
the data captured by the cameras in further stages, we first group successive scan lines into
rectangular RGB and hyperspectral images with resolution 1200× 1184 and 600× 640. After
that, we apply a preprocessing step that consists on cropping and downsampling them to
200× 200 pixels with nearest-neighbors interpolation and normalizing their values to 32-bit
float values in the range [0, 1]. In total, the dataset contains 213 segmentation masks for the
films and 164 for the baskets (some samples are shown in Figure 1).

Although this dataset can be considered as a “toy” dataset in the sense of size and number
of classes, it is derived from a real-world scenario and reflects the challenges encountering
in addressing this specific problem, while it provides enough data to measure and evaluate
performance insights.

Figure 1: Examples of the RGB images and the annotated objects (large wrappings in yellow
and baskets in blue)

Approaches compared in the study In our study we compared different strategies for
handling the input data and utilizing the computational resources efficiently. All of them
were integrated in a segmentation framework based on MiniNet-v2 [ARM20] implemented on
top of PyTorch 2.0.1, which can be found at https://github.com/ferpb/mininet-v2.
Here we describe the alternatives considered:

1. RGB image approach: This base approach uses only the RGB images as input to the
segmentation model. It is used as reference, to check that the accuracy obtained by the
different alternatives with hyperspectral data is reasonable.

2. Full hyperspectral approach: In this approach, we fed the entire hyperspectral data into
the model, trying to leverage all the spectral information for accurate segmentation.

3. Linear combination of bands: As an alternative to using the full hyperspectral data, we
experimented reducing its dimensionality with principal component analysis (PCA).
This method projects the data to a lower dimensionality space in the way that better
preserves the variability of the data. Because PCA is applied to the data as a preprocess-
ing step before training and inference, we can easily perform it in a different device, so
we considered executing this step in the CPU instead of in the GPU with the objective
of reducing the size of data transfers. In all cases, the segmentation model runs on the
GPU.

https://github.com/ferpb/mininet-v2


Metrics The results include metrics describing the accuracy of the classification and the
efficiency of the computation. For the accuracy we use the mean intersection over union
(mIoU) of the two classes considered, while for the efficiency we measure the global execution
time, the partial execution time of certain steps (data transfers between devices, preprocessing,
dimensionality reduction and inference) and the global energy consumption of each device
(GPU and CPU).

Setup/Platform All experiments have been run on a system composed by a Intel Core
i7-6700 CPU and an NVIDIA GeForce GTX 1070 GPU running Ubuntu 22.04.2 LTS and
CUDA 11.7. Two tools have provided CPU/DRAM and GPU energy: perf and nvidia-smi.
PyTorch’s profiling and benchmarking modules helped measuring execution times.

3 Preliminary Results

Table 1 shows the global performance metrics for segmenting a single batch of 16 images.
Although not stated in the table, the most time-consuming step in our evaluation setup is
loading the images from the hard drive after they are captured by the cameras. On average, it
takes 0.2 seconds to load a batch of 16 RGB images, whereas loading a hyperspectral batch
takes 2.7 seconds approximately.

After the images are loaded in the computer’s RAM, the time required for processing the
hyperspectral batch is mainly influenced by preprocessing (downsampling and normaliza-
tion) and data transfers to GPU, rather than the segmentation model itself. When performing
PCA on the CPU, we see that this percentage is reduced as fewer data is transferred to the
GPU, but because performing PCA in the CPU in a sequential way is slow, the overall time
increases. On the other hand, CPUs usually require less power compared to GPUs, so in this
base, spending more time on the CPU PCA and transferring less data to the GPU interestingly
causes a slight reduction on the total energy consumption.

Regarding the mIoU metric, employing only RGB images already provides a favorable
tradeoff between accuracy and time, but further improvements can be achieved by using
hyperspectral images at the cost of increased time and energy consumption. In a problem
domain like the one we are addressing, where interruptions in the recycling plant block
the whole process, trading off additional time for enhanced accuracy can be an interesting
consideration. We notice that PCA proves to be highly beneficial in extracting informative
features and reducing the inherent reducing of hyperspectral data before using it as input
to this neural network. When we apply PCA with 20 and 50 components and this step is
performed in the GPU, both the mIoU and the efficiency improve.

4 Conclusions and Future Work

These preliminary results shed light on the bottlenecks associated with working with large
data, in particular hyperspectral images. Our results highlight two primary challenges:
preprocessing and data transfer between devices.

Efficient preprocessing techniques that can represent the data in a reduced form at the
beginning of the pipeline are crucial. An exciting direction is to explore methods that are
able to fulfill opposite requirements such as accuracy and energy efficiency by incorporating



Input Reduction mIoU ↑ Time (s) ↓ Preparation (%) Energy (J) ↓

RGB – 0.437 0.039 7.01 12.921
Hyper – 0.320 0.293 52.25 121.604
Hyper PCA 3 GPU 0.241 0.298 86.80 118.521
Hyper PCA 3 CPU 0.241 0.378 43.81 112.162
Hyper PCA 20 GPU 0.479 0.290 86.29 117.204
Hyper PCA 20 CPU 0.479 0.382 41.33 112.845
Hyper PCA 50 GPU 0.521 0.295 86.01 122.842
Hyper PCA 50 CPU 0.521 0.457 36.34 122.721

Table 1: Accuracy and efficiency results of the considered alternatives. The “time” and
“energy” columns contain the consumption of the pipeline when processing a single input
batch. The “preparation” column shows the percentage of time spent preprocessing the input
images and transferring data to the GPU before inference, not including PCA.

hardware accelerators close to the sensors, enabling the delivery of preprocessed data that
can be efficiently handled in subsequent stages of an image-processing pipeline.

References

[AJH+16] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural
network computing. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 1–13, 2016.

[ARM20] Iñigo Alonso, Luis Riazuelo, and Ana C. Murillo. MiniNet: An efficient semantic
segmentation ConvNet for real-time robotic applications. IEEE Transactions on
Robotics (T-RO), 2020.

[Dal22] William Dally. On the model of computation: Point. Commun. ACM, 65(9):30–32,
aug 2022.

[SCYE17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing of
deep neural networks: A tutorial and survey, 2017.

Acknowledgments

This work was partially supported by MCIN/AEI/10.13039/501100011033 (grants PID2019-
105660RB-C21 and MIG-20201006), and by Government of Aragon (T5820R research group).


	Introduction
	Methodology
	Preliminary Results
	Conclusions and Future Work

